
AN ENHANCER FOR REACTIVE PLANS

Diana F. Gordon

Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, Code 5514

Washington, D.C. 20375-5000

Abstract
This paper describes our method for
improving the comprehensibility, accuracy,
and generality of reactive plans. A reactive
plan is a set of reactive rules. Our method
involves two phases: (1) formulate
explanations of execution traces, and then (2)
generate new reactive rules from the
explanations. Since the explanation phase
has been previously described, the primary
focus of this paper is the rule generation
phase. This latter phase consists of taking a
subset of the explanations and using these
explanations to generate a set of new reactive
rules to add to the original set. The
particular subset of the explanations that is
chosen yields rules that provide new domain
knowledge for handling knowledge gaps in
the original rule set. The original rule set, in
a complimentary manner, provides expertise
to fill the gaps where the domain knowledge
provided by the new rules is incomplete.

1 INTRODUCTION
Reactive planning has proven to be a highly effective
approach to planning (e.g., [8]). We have developed an
enhancer for reactive plans that satisfies two goals. The
first goal is to facilitate human understanding of plans
generated by a particular class of reactive planners. This
class consists of planners that gain effectiveness at the
expense of human comprehensibility (e.g., [1] and [3]).
The second goal is to improve the reliability and
generality of reactive plans.

Our approach is divided into two phases: an explanation
phase and a rule generation phase. The explanation
phase begins with the application of a reactive planning
system to a problem. The system generates an execution
trace, which is translated into an abstract language trace.
Next, a variant of Explanation Based Learning (EBL) is
applied to explain the abstract trace using a previously

constructed domain theory. The explanation process,
which captures generalizations such as symmetries,
culminates in English text describing the high level
strategies of the reactive planner. We assume that each
plan is composed of a set of reactive (i.e., stimulus-
response) rules. During the rule generation phase, a
subset of the explanations from the previous phase is
used to generate a set of new reactive rules to add to the
original plan. The new rules behave as a local expert
because they remedy localized weaknesses of the
original plan. The system may now use this enhanced
plan to tackle the problem again. Our implementation of
this method is called EXplain-and-GENerate (EXGEN).

The reactive planner’s knowledge is imperfect. We
know this because the planner, when using this
knowledge (the original reactive plan), has less than a
perfect success rate. Furthermore, the domain theory
used to explain and generate rules is only complete for a
local area of expertise. What is most interesting is that
both sources of knowledge complement each other, one
filling in the knowledge gaps for the other. When
EXGEN is added to the reactive planner, the newly
generated set of rules helps the planner to achieve 100%
success for a problem described in Section 2.

Previous research is related to this work. EXGEN is
similar to Learning Apprentice Systems (e.g., [2], [10])
because it uses EBL to explain the behavior of an expert
and then uses this explanation to generate new planning
rules. The difference is that Learning Apprentice
Systems learn from a human to improve a system,
whereas EXGEN learns from a system for the purposes
of human understanding and system improvement. The
type of EBL invoked by EXGEN is Plausible EBL, which
has been developed by Gervasio and DeJong [2]. Our
approach involves completing gaps in the domain theory
for EBL. In terms of completing the gaps in a domain
theory, several researchers provide solutions ([5], [10],
[11], and [12]). However, we do not employ any of the
previous approaches because their assumptions are not
met in our situation. Instead, we use the original reactive
plan to fill the knowledge gaps in the domain theory.
Finally, the translation from high-level explanations to
reactive rules is related to two techniques: specialization

[7] and symbol grounding [6].

Despite these similarities to previous research, the
approach we present here is novel. Reactive planners are
becoming increasingly complex in terms of their
behavior. In response to this growing complexity, we
have developed a plan enhancer. Ours is the first system
that can explain the behavior of a reactive planner in
human-oriented form, then improve the reactive plan
based on the explanation. Since most people do not fully
trust automation, especially if lives are at stake, people
will probably want to screen system-generated plans for
many applications. A plan enhancer can increase the
acceptability of reactive plans to humans.

2 THE REACTIVE PLANNER AND
DOMAIN

So far, we have tested our method with the SAMUEL
system [4]. This system uses a genetic algorithm and
other competition-based heuristics to learn high
performance reactive plans in the absence of a strong
domain theory. SAMUEL consists of three major
components: a problem specific module, a performance
module, and a learning module. In this research, we use
a plan that has already been learned by the system.
Therefore, our method only employs the problem specific
and performance modules. Although reactive planning
consists of both learning and executing a plan, for
simplicity, we use the terms ‘‘SAMUEL’’ and ‘‘reactive
planner’’ to refer to the performance module of this
system.

SAMUEL has been applied to a variety of domains. We
would like to see if EXGEN can improve this system’s
performance in each of these domains. Schultz and
Grefenstette [9] have demonstrated that the addition of
manually developed rules can improve SAMUEL’s
performance for the Evasive Maneuvers (EM) problem.
Therefore, we have decided to begin testing our
approach to automatic rule generation on this problem.
In EM, which is simulated two-dimensionally, an agent
(controlled by the reactive plan) tries to evade an
adversary. The adversary tracks and tries to destroy the
agent. An episode in EM begins with the adversary
approaching the agent from a randomly chosen direction
ends when either the agent is destroyed by the adversary
or the adversary’s speed falls below a given threshold.
The latter occurs because, although the adversary’s speed
is initially greater than the agent’s speed, the adversary
loses speed as it chases the agent. Six sensors provide
the agent with information about the current state: the
agent’s last-turn, the time, and the adversary’s range,
bearing, heading, and speed. There is one action
variable to control the agent’s turning-rate (also called
turn).

An example of a rule learned by SAMUEL for EM is the
following:

IF (and (last-turn [-135..135]) (time [2..12])
(range [0..700]) (bearing [2..6])
(heading [0..30]) (speed [100..950]))

THEN (turn 90)

where ‘‘(S [X..Y])’’ means that sensor S has values X
through Y. Although individual rules are understandable,
the general strategy underlying a chain of rule firings is
not. Furthermore, these rules do not contain information
about subgoals, such as ‘‘increasing range of adversary’’,
that the rules can achieve.

3 EXPLANATION PHASE

EXGEN generates explanations of execution traces. An
execution trace contains snapshots of sensor readings
resulting from a sequence of actions. In EM, one trace
corresponds to one episode, and the success or failure of
the agent at evading the adversary is noted at the end of
the trace. Currently, only success traces are explained
(i.e., traces where the agent evades the adversary).
EXGEN translates each trace to an abstract trace that
contains qualitative terms in place of numeric values,
then uses (Plausible) EBL to identify plausible strategies
within the abstract trace. A strategy is equivalent to an
EBL proof. A strategy consists of a set of triggering
preconditions (i.e., sensor readings) and a triggering
action (which may be a mathematical derivative of an
action) followed by a chain of causal events which
ultimately results in the satisfaction of a subgoal. A
triggering action is directly controllable by the agent,
whereas a subgoal is not. Finally, the system performs a
largely cosmetic translation of each strategy to an
English explanation. An example of an English
explanation that EXGEN generated for EM is:

(E1) The triggering action of the agent, which is
increasing turning rate, caused the adversary’s turning
rate to have value increasing, which caused the
adversary’s deceleration to have value increasing, which
caused the subgoal, increasing adversary deceleration, to
have been achieved between times 2 and 3. The
triggering preconditions are: (1) the adversary’s range is
not far, and (2) the adversary’s speed is high.

The domain theory for EBL is empirically derived by a
program that calculates average frequencies of sensor
and action values from previous success traces. A more
detailed description of the explanation phase may be
found in [3].

 4 RULE GENERATION PHASE

The rule generation phase is the newest part of our
method. This phase involves two activities: generating
rules and selecting useful rules. The first activity is done
by EXGEN, but the latter is a combined human-system
effort.

EXGEN generates new reactive rules from explanations.
Each rule is formed from the triggering preconditions
and action of the strategy associated with an explanation.
The rule is expected to achieve the subgoal for which it
is a trigger. The mapping that is used to convert from
abstract to concrete numeric values is the inverse of the
mapping from concrete to abstract. An example rule that
might be generated for the strategy associated with
explanation E1 is:

(R1) IF (and (last-turn [45..45]) (range [0..500])
(speed [400..1000]))

THEN (turn 135)

This rule will increase the turning rate of the agent
because the last-turn is 45 degrees and the next turn is
135 degrees.

A single explanation typically yields multiple rules. An
important part of the rule generation phase is the
selection of those new rules that can improve SAMUEL’s
performance. The reader should be aware during the
remaining discussions that the way SAMUEL uses a
reactive plan is highly complex due to partial rule
matching and other features. Therefore, we do not have
a clear idea of precisely how the new rules patch the
gaps in the original rule set. Instead, we identify gaps in
the original plan by analyzing planning failures that
appear in the execution trace.

We have decided to add the newly generated rules to the
original rule set, rather than to use them alone, because
our domain theory is incomplete. Instead of consulting a
domain expert to complete the theory, we adopt a
complementary empirical-analytical approach to the
problem. The original rule set, called ‘‘rules-sam’’,
yields partial expertise and the new rules yield partial
expertise.

How can this complementary blend of old and new rules
be implemented? Experiments have indicated that an
integration problem arises if this blend is performed
arbitrarily. In other words, the new rules can force
SAMUEL to enter parts of the search space for which no
new rule applies and the rules from rules-sam do not
provide adequate expertise. To illustrate with a specific
EM scenario, suppose the actions taken at time T and (T
+ 1) using rules-sam are ‘‘turn right’’ and then ‘‘turn
left’’ respectively. If the explanation process captures
symmetry, then the action recommended by a new rule at
time T might be ‘‘turn left’’. If the domain theory is
incomplete, then perhaps no new rule would apply at (T
+ 1). If rules-sam also lacks knowledge for the new

situation, then SAMUEL might apply the original rule
that fired at (T + 1), which has the action ‘‘turn left’’.
The pair of ‘‘turn left’’ actions at times T and (T + 1)
would not perform the original direction reversal that
was probably effective.

We have tried using genetic algorithms on the blended
rule set to resolve the integration problem. Initial results
are not encouraging. Therefore, instead of arbitrarily
blending rules, we have chosen to decompose the main
problem (e.g., EM) into two stages. A local expert is
used to solve the latter stage. This is similar to the
development of an expert to solve chess end games. The
reason for developing an expert for the latter stage is that
once control is transferred to this local expert, it will not
return to rules-sam. Rule integration is therefore not a
problem.

Let us illustrate how this method has been applied to EM.
First, we have (manually) identified a latter stage of the
EM problem. This required adding a new sensor agent
speed to SAMUEL and running again on EM.
Examination of failure traces reveals that rules-sam fails
only when the adversary’s speed is equal to the agent‘s
speed. Furthermore, we know that once the adversary’s
speed goes below the agent’s speed, the adversary’s
speed remains below it. The subproblem called
restricted EM, in which the adversary’s speed is less than
or equal to the agent’s speed, covers the knowledge gap
of rules-sam and also satisfies the constraint that control
need not be returned to rules-sam.

Next, EXGEN has developed a local expert, called
‘‘rules-expert’’, for restricted EM. Out of all the
explanations generated by EXGEN, experiments have
determined that two explanations suffice to generate this
local expert. The first states that if the agent turns away
from the adversary then the agent achieves the subgoal
‘‘adversary behind agent’’ (explanation E2). The second
states that if the agent moves straight when the adversary
is behind then the agent achieves the subgoal
‘‘increasing adversary range’’ (explanation E3). EXGEN
converts the triggering preconditions and actions of these
explanations into reactive rules. The rules that are
derived from explanations E2 and E3 are mutually
exclusive as well as exhaustive with respect to the ranges
of values that they cover. This local expert rule set
enables the planner to succeed 100% of the time over
1000 episodes of restricted EM.

To adapt these rules to be part of a plan for the original
(unrestricted) EM problem, EXGEN adds a test for
‘‘adversary speed ≤ agent speed’’ to the conditions of the
new rules. Also, we have modified SAMUEL’s conflict
resolution mechanism to prefer the new EBL rules
whenever they apply. Since the rules are mutually
exclusive and exhaustive, this implies that once control
moves to rules-expert, a deterministic sequence of
actions are taken by the agent that never fail. These
steps yield a local expert for restricted EM that fills the
knowledge gap of rules-sam. The combination of rules-

sam and this rules-expert is called ‘‘rules-combo’’.

The original plan, rules-sam, is a high-performing rule
set. Using rules-sam, SAMUEL wins (i.e., evades the
adversary) 992 out of 1000 episodes (99.2%). However,
when the new rules are added to form rules-combo, the
success over 1000 episodes climbs to 100% on the
original EM problem. Although the performance
improvement from 99.2% to 100% gained by adding the
new rules to rules-sam would be insignificant for many
applications, there are some applications for which this
would be very meaningful. One example is the life-
threatening situation of a human pilot using this plan to
evade a missile that is tracking his plane. Furthermore,
because they are based on generalized explanations (e.g.,
which capture symmetries), the new rules are more
general than those in rules-sam and are therefore
potentially applicable under more varied conditions.

5 SUMMARY AND FUTURE WORK

The goal of this research has been to improve the
acceptability of reactive plans for human use. Two steps
are taken toward this end, as described here: (1) human
comprehensibility is improved, and (2) reliability and
generality are increased. Using the approach that we
present, it is possible to increase the trustworthiness of
reactive plans.

Although comprehensibility is greatly improved by this
method, the accuracy improves by only a small margin
for the EM problem. This is due to the fact that the
original plan developed by SAMUEL is already highly
effective. In the future, we would like to apply this
method to other problems on which SAMUEL is less
effective to see if a much greater performance
improvement can be achieved.

When applying EXGEN to other domains, we would also
like to evaluate its generality. All of EXGEN’s
(implemented) learning methods seem likely to be
applicable to a wide variety of domains. However, the
separation of EM into stages to avoid integration
problems may not be generally applicable. Future work
will focus primarily on developing and implementing a
more general method for handling rule integration.

Acknowledgements

I would like to thank John Grefenstette for suggesting the
EXGEN project and providing SAMUEL. I would like
to thank Bill Spears for his helpful comments, which
include suggesting the use of a ‘‘local expert’’. I would
also like to thank Jude Shavlik for indicating related
literature, and members of the Machine Learning Group
at NCARAI for proofreading this paper.

References

[1] Brooks, R. (1990). Elephants don’t play chess.

Robotics and Autonomous Systems 6: 3-15.

[2] Gervasio, M. and DeJong, G. (1989). Explanation-
based learning of reactive operators. Proceedings of the
Sixth International Workshop on Machine Learning.
Morgan Kaufmann, Ithaca, NY.

[3] Gordon, D. and Grefenstette, J. (1990). Explanations
of empirically derived reactive plans. Proceedings of the
Seventh International Conference on Machine Learning.
Morgan Kaufmann, Austin, TX.

[4] Grefenstette, J., Ramsey, C. and Schultz, A. (1990).
Learning sequential decision rules using simulation
models and competition. To appear in Machine
Learning.

[5] Hall, R. (1986). Learning by failing to explain.
Proceedings of the Fifth National Conference on
Artificial Intelligence. Philadelphia, PA.

[6] Harnad, S. (1990). The symbol grounding problem.
Physica D, 42(1/3): 335-346.

[7] Langley, P. (1987). A general theory of
discrimination learning. Production System Models of
Learning and Development. D. Klahr, P. Langley, and R.
Neches (eds), The MIT Press, Cambridge, MA.

[8] Schoppers, M. (1987). Universal plans for reactive
robots in unpredictable environments. Proceedings of
the Tenth International Joint Conference on Artificial
Intelligence. Milan, Italy.

[9] Schultz, A. and Grefenstette, J. (1990). Improving
tactical plans with genetic algorithms. Proceedings of
the Tools for Artificial Intelligence Conference.
Herndon, VA.

[10] Tecuci, G. and Kodratoff, Y. (1990). Apprenticeship
learning in imperfect domain theories. Machine
Learning: An Artificial Intelligence Approach, Volume
III. Y. Kodratoff and R. Michalski (eds), Morgan
Kaufmann.

[11] Van Lehn, K. (1990). Learning one subprocedure
per lesson. Artificial Intelligence, 31(1): 1-40.

[12] Wilkins, D. (1990). Knowledge base refinement as
improving an incorrect and incomplete domain theory.
Machine Learning: An Artificial Intelligence Approach,
Volume III. Y. Kodratoff and R. Michalski (eds), Morgan
Kaufmann.

